3d Printing for Continuous Fiber Reinforced Thermoplastic Composites Mechanism and Performance

Abstract

The aim of this study is to analysis the tensile deformation behavior of 3D printed unidirectional continuous fiber reinforced thermos-plastic composites (UD-CFRTP). Tensile experiments were performed to obtain the deformation curves and tensile properties of composites specimens. It is found that the reinforcement fiber bundles of specimens bearing the load non-synchronously. Meanwhile, with the fiber content change, the deformation form could be different. An improved micromechanical model was proposed to investigate the influence of non-synchronous phenomenon and fiber content on the deformation behavior. The fiber content is measured by the number of reinforcement fiber bundles instead of fiber volume fraction in this model. Based on this model, the deformation behavior and tensile properties of test specimens with different fiber bundles number were analyzed in detail. The analytical results about deformation behavior and tensile properties show a good agreement with experiment results.

Abbreviations

E :

Elasticity modulus

E m :

Elasticity modulus of matrix

E f :

Elasticity modulus of fiber

X :

Tensile strength

X m :

Tensile strength of matrix

X f :

Tensile strength of fiber

References

  1. G. D. Goh, S. Agarwala, G. L. Goh, V. Dikshit, S. L. Sing and W. Y. Yeong, Additive manufacturing in unmanned aerial vehicles (UAVs): challenges and potential, Aerosp. Sci. Technol., 63, (2017) 140–151.

    Article  Google Scholar

  2. C. K. Chua and K. F. Leong, 3D Printing and Additive manufacturing: Principles and Applications, Applications, Fifth Ed., World Scientific Publishing Company, Singapore (2017).

    Book  Google Scholar

  3. I. Gibson, D. W. Rosen and B. Stucker, Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, 2nd Ed., Springer, New York (2010).

    Book  Google Scholar

  4. C. Shemelya et al., Anisotropy of thermal conductivity in 3D printed polymer matrix composites for space based cube satellites, Addit. Manuf., 16, (2017) 186–196.

    Google Scholar

  5. N. A. Dickson, N. J. Barry, K. A. McDonnell and D. P. Dowling, Fabrication of continuous carbon, glass and kevlar fibre reinforced polymer composites using additive manufacturing, Addit. Manuf., 16, (2017) 146–152.

    Google Scholar

  6. M. F. Afrose, S. H. Masood, P. Ilovenitti, M. Nikzad and I. Sbarski, Effects of part build orientations on fatigue behaviour of FDM-processed PLA material, Prog. Addit. Manuf., 1, (2011) 21–28.

    Article  Google Scholar

  7. G. W. Melenka, J. S. Schofield, M. R. Dawson and J. P. Carey, Evaluation of dimensional accuracy and material properties of the MakerBot 3D desktop printer, Rapid Prototyping J., 21, (2015) 618–627.

    Article  Google Scholar

  8. D. Jiang and D. E. Smith, Anisotropic mechanical properties of oriented carbon fiber filled polymer composites produced with fused filament fabrication, Addit. Manuf., 18, (2017) 84–94.

    Google Scholar

  9. C. Unterweger, J. Duchoslav, D. Stifter and C. Fürst, Characterization of carbon fiber surfaces and their impact on the mechanical properties of short carbon fiber reinforced polypropylene composites, Compos. Sci. Technol., 108, (2015) 41–47.

    Article  Google Scholar

  10. D. D. L. Chung, Carbon Composites: Composites with Carbon Fibers, Nanofibers and Nanotubes, 2nd Ed., Butterworth-Heinemann (2016).

  11. A. M. G. Coelho and J. T. Mottram, A review of the behaviour and analysis of bolted connections and joints in pultruded fibre reinforced polymers, Mater. Des., 74, (2015) 86–107.

    Article  Google Scholar

  12. P. Feng, X. Meng and H. Zhang, Mechanical behavior of FRP sheets reinforced 3D elements printed with cementitious materials, Compos. Struct., 134, (2015) 331–342.

    Article  Google Scholar

  13. U. Kalsoom, P. N. Nesterenko and B. Paull, Recent developments in 3D printable composite materials, RSC Advances, 6(65), (2016) 60355–60371.

    Article  Google Scholar

  14. F. V. D. Klift, Y. Koga, A. Todoroki, M. Ueda, Y. Hirano and R. Matsuzaki, 3D printing of continuous carbon fibre reinforced thermo-plastic (CFRTP) tensile test specimens, Open J. Compos. Mater., 6, (2016) 18–27.

    Article  Google Scholar

  15. X. Wang, M. Jiang, Z. Zhou, J. Gou and D. Hui, 3D printing of polymer matrix composites: a review and prospective, Compos. Part B. Eng., 110, (2017) 442–458.

    Article  Google Scholar

  16. W. Zhong, F. Li, Z. Zhang, L. Song and Z. Li, Short fiber reinforced composites for fused deposition modeling, Mater. Sci. Eng. A, 301, (2001) 125–130.

    Article  Google Scholar

  17. R. T. L. Ferreira, I. C. Amatte, T. A. Dutra and D. Bürger, Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers, Compos. Part B. Eng., 124, (2017) 88–100.

    Article  Google Scholar

  18. S. Martin, S. Chethan, A. Florian, T. Gerhard, C. Ludwig, H. Clemens and S. Janak, Anisotropic properties of oriented short carbon fibre filled polypropylene parts fabricated by extrusion-based additive manufacturing, Compos. Part A. Appl. Sci. Manuf., 113, (2018) 95–104.

    Article  Google Scholar

  19. J. Justo, L. Tavara, L. Garcia-Guzman and F. Paris, Characterization of 3D printed long fibre reinforced composites, Compos. Struct., 185, (2018) 537–548.

    Article  Google Scholar

  20. H. Brooks and S. Molony, Design and evaluation of additively manufactured parts with three dimensional continuous fibre reinforcement, Mater. Des., 90, (2016) 276–283.

    Article  Google Scholar

  21. H. L. Tekinalp, V. Kunc, G. M. Velez-Garcia, C. E. Duty, L. J. Love, A. K. Naskar, C. A. Blue and S. Ozcan, Highly oriented carbon fiber-polymer composites via additive manufacturing, Compos. Sci. Technol., 105, (2014) 144–150.

    Article  Google Scholar

  22. N. Li, Y. Li and S. Liu, Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing, J. Mater. Process. Tech., 238, (2016) 218–225.

    Article  Google Scholar

  23. C. Yang, X. Tian, T. Liu, Y. Cao and D. Li, 3D printing for continuous fiber reinforced thermoplastic composites: mechanism and performance, Rapid Prototyping J., 23(1), (2017) 209–215.

    Article  Google Scholar

  24. X. Tian, T. Liu, C. Yang, Q. Wang and D. Li, Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites, Compos. Part A. Appl. Sci. Manuf., 88, (2016) 198–205.

    Article  Google Scholar

  25. K. Mori, T. Maeno and Y. Nakagawa, Dieless forming of carbon fibre reinforced plastic parts using 3D printer, Procedia Eng., 81, (2014) 1595–1600.

    Article  Google Scholar

  26. Y. Nakagawa, K. Mori and T. Maeno, 3D printing of carbon fibre-reinforced plastic parts, Int. J. Adv. Manuf. Tech., 91(5–8), (2017) 2811–2817.

    Article  Google Scholar

  27. P. Bettini, G. Alitta and G. Sala, Fused deposition technique for continuous fiber reinforced thermoplastic, J. Mater. Eng. Perform., 26, (2017) 843–848.

    Article  Google Scholar

  28. M. A. Caminero, J. M. Chacón, I. García-Moreno and J. M. Reverte, Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fuseddeposition modeling, Polym. Test., 68, (2018) 415–423.

    Article  Google Scholar

  29. R. Matsuzaki, M. Ueda, M. Namiki, T. K. Jeong, H. Asahara, K. Horiguchi, T. Nakamura, A. Todoroki and Y. Hirano, Three-dimensional printing of continuous-fiber composites by innozzle impregnation, Sci. Rep., 6, (2016) 23058.

    Article  Google Scholar

  30. G. D. Goh, V. Dikshit, A. P. Nagalingam, G. L. Goh, S. Agarwala, S. L. Sing, J. Wei and W. Y. Yeong, Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics, Mater. Des., 137, (2018) 79–89.

    Article  Google Scholar

  31. The Mark Two Desktop 3D Printer, Markforged, Massachusetts, USA (2019).

  32. J. Alvaro, J. Mendoza, E. G. Johnathan, J. R. Andrew, R. B. Pipes and K. Marisol, A parametric study of fiber volume fraction distribution on the failure initiation location in open hole off-axis tensile specimen, Compos. Sci. Technol., 71, (2011) 1819–1825.

    Article  Google Scholar

  33. W. Garrett, W. Melenka, B. K. O. Cheung, J. S. Schofield, M. R. Dawson and J. P. Carey, Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures, Compos. Struct., 153, (2016) 866–875.

    Article  Google Scholar

  34. H. A. Abadi, H.-T. Thai, V. Paton-Cole and V. I. Patel, Elastic properties of 3D printed fibre reinforced structures, Compos. Struct., 193, (2018) 8–18.

    Article  Google Scholar

  35. N. Fuda, C. Weilong, Q. Jingjing, W. Junhua and W. Shiren, Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling, Compos. Part B. Eng., 80, (2015) 369–378.

    Article  Google Scholar

  36. M. Mohammadizadeh, I. Fidan, M. Allen and A. Imeri, Creep behavior analysis of additively manufactured fiber-reinforced components, Int. J. Adv. Manuf. Tech., 99, (2018) 1225–1234.

    Article  Google Scholar

  37. M. A. Caminero, J. M. Chacón, I. García-Moreno and G. P. Rodríguez, Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modeling, Compos. Part B. Eng., 148, (2018) 93–103.

    Article  Google Scholar

  38. N. L. Juan, A. G. Horacio, O. C. Pedro, W. M. H. Verbeeten and S. G. Daniel, Tensile properties and failure behavior of chopped and continuous carbon fiber composites produced by additive manufacturing, Addit. Manuf., 26, (2019) 227–241.

    Google Scholar

  39. A. C. Miguel, L. G. Ignacio, C. S. Nicolette, L. S. J. Luis, G. G. Teodolito, C. C. J. Sebastián and S. B. Olga, Evaluation of compressive and flexural properties of continuous fiber fabrication additive manufacturing technology, Addit. Manuf., 22, (2018) 157–164.

    Google Scholar

  40. Y. Wang, Mechanics and Structural Design of Composite Materials, 1st Ed., East China University of Science and Technology Press, Shanghai, China (2012) 115–131.

    Google Scholar

  41. ASTM D3039/D3039M, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, ASTM International (2008).

Download references

Acknowledgments

This work is supported by Fundamental Research Funds for the Central Universities (Grant No. 2232018A3-08).

Author information

Authors and Affiliations

Corresponding author

Correspondence to Jun Hu.

Additional information

Jun Hu is a Professor and Doctoral Supervisor at the School of Mechanical Engineering, Donghua University, Shanghai, China. His research interests include CNC technology and equipment, laser fine processing technology and manufacture technique of composite structures.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Xu, L. & Hu, J. Micromechanical analysis of the tensile deformation behavior for 3D printed unidirectional continuous fiber reinforced thermos-plastic composites. J Mech Sci Technol 34, 5085–5092 (2020). https://doi.org/10.1007/s12206-020-1112-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI : https://doi.org/10.1007/s12206-020-1112-5

Keywords

  • 3D printed composites
  • Deformation behavior
  • Micromechanical model
  • Non-synchronous phenomenon

uydrom1948.blogspot.com

Source: https://link.springer.com/article/10.1007/s12206-020-1112-5

0 Response to "3d Printing for Continuous Fiber Reinforced Thermoplastic Composites Mechanism and Performance"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel